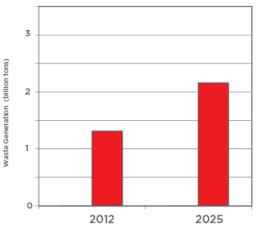
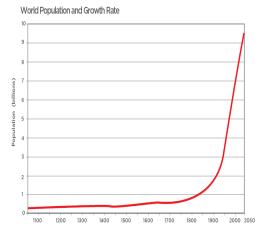

Treating Waste as a Renewable Source of Energy

Advanced Thermal Technologies for the conversion of Waste-to-Energy

WRETC - 7th World Renewable Energy Technology Congress & Expo, August 21-23, 2016 Delhi, India




WE HAVE A GLOBAL WASTE & POPULATION GROWTH CHALLENGES

Most of the world's MSW **MSW** generation is landfilled (billion tpy): 9% 3 6% Dump neration (billion tons) Landfilled 16% 2 43% Compost Recycled Landfilled Waste Ger 17% WTE Others 9% (Source: World Bank, 2012)

(Source: World Bank, 2012)

World population growth (estimates in billions):

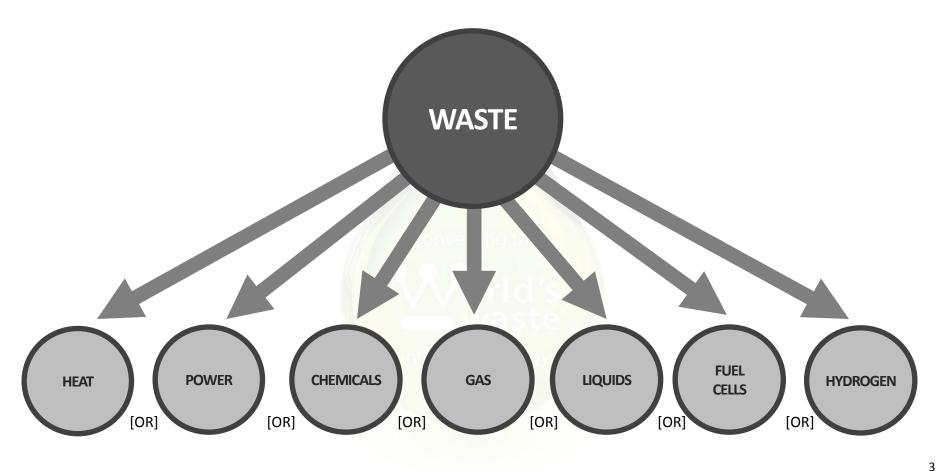
Facts are that landfills cause:

- Greenhouse gas emissions, both CO₂ and methane
- Unnecessary land occupation •
- Water contamination through leaching
- Emissions that contain hazardous air pollutants that can be dangerous
- Clean up issues for future generations

World population growth impacts waste generation:

- World population is projected to reach 9 Billion by 2050
- Urbanization will account for 86% in developed • countries; 64% in developing countries
- Increase in urban population and consumption has a • direct impact on the increase of waste generation

"Waste generation levels are expected to grow by 69% by 2025." (World Bank Study, 2012)



Waste-TO-Energy WWW.ALTERNRG.COM

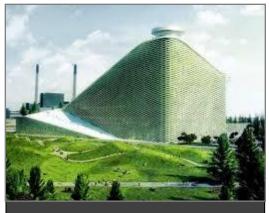
WASTE-TO-ENERGY: DEFINITION

Conversion of waste materials into useable energy.

Waste-TO-Energy

Global Waste Management (Practice & Challenges)

GLOBAL WASTE MANAGEMENT: PRACTICE & CHALLENGES


Waste Management & Evolution	Tier 1 (E.g. Western Europe, Japan)	Tier 2 (E.g. USA, Canada, Australia)	Tier 3 (E.g. Middle East, S. America, E. Europe)	Tier 4 (E.g. Asia/India, Developing Countries)
Waste segregation at source (E.g. 3R's)	HIGH	HIGH	MEDIUM	LOW
Advanced landfilling	HIGH	HIGH	LOW	LOW
Thermal Treatment	HIGH	LOW	LOW	N/A
Environment pollution (E.g. methane gas, CO ₂ , gas flaring, open dumping, health hazard, etc.)	LOW	MEDIUM	HIGH	HIGH

TIER 1 – CURRENT STATE OF THE ART


Urban - Denmark

Urban - Denmark

TIER 4 – NOT STATE OF THE ART

Human habitation near a landfill

Crop cultivation besides a landfill

Waste-10-Energy

WWW.ALTERNRG.COM

Waste Management (Challenges & Opportunities)

ASIA/INDIA PERSPECTIVE

Challenges:

- Asia is a highly populated region of ~4 Billion people (India 1.3 Billion); with highly populated urban centres
- Lack of adequate waste management/recycling facilities
- Waste material consists of high moisture content/wet organics
- Country risk, including political, social, changing renewable policies, difficult to obtain long-term energy price
- Scarcity of development capital and scarcity of credible project developer/owners

Opportunities:

- Waste volumes are growing and majority of waste is largely landfilled
- Acute energy demand for power generation and economic growth
- Limited availability of land for landfilling vs. human habitation
- International pressure for cleaner/sustainable waste practices and GHG reduction

Waste-TO-Energy

ASIA/INDIA VERSUS NA/EU

	North America / Europe	Asia
Waste	 RDF widely used with low moisture/organic content Low in glass/metals content High calorific value and energy output 	 High moisture/organic content High in glass/metals content Lower energy output Low calorific value
Long-term Contracts	 Mostly open markets Allowance to negotiate long-term waste and energy contracts 	 Mostly closed markets Obtaining secure, low-risk contracts is much more difficult
Revenues	 Revenues are higher due to medium/high tipping fees 	 Revenues are lower due to low tipping fees
Capital Cost	Medium/high labor and material costsHigher capital costs to build a facility	Low labor and material costsLower capital costs to build a facility
Political Risk	 Stable governments Long-term policy with predictable business environment 	Less favorable conditions
Permitting	 Permitting is a lengthy process due to many stakeholders and stringent permit/license processes 	 Permitting often easier due to fewer NGOs and simpler permit/license processes

GLOBAL DEVELOPMENT CHALLENGES

- NGO pressure anything short of 100% recycling is not acceptable
- Changing or uncertain renewable energy policies
 - Unfavourable mandates or lack of incentives
 - Unavailable/uncertain long-term waste supply agreements/PPAs
 - Waste-to-energy not addressed or not considered renewable
 - Incentives come and go with political change
- Limited access/unavailability to large project development capital/funding
- Less than factual media coverage, speculation and misunderstandings about advanced thermal technologies (e.g. plasma gasification)
- Risk aversion to newer technologies

Waste-TO-Energy

Government Initiatives & Incentives for Waste Conversion

GOVERNMENT INITIATIVES & INCENTIVES

Country	Landfill Tax	Renewable Energy Mandate	Legislations	First Legislations Enacted
India	×	\checkmark	\checkmark	1986
China	×	\checkmark	\checkmark	1989
Australia	\checkmark	\checkmark	\checkmark	2009
EU (27)	\checkmark	\checkmark	\checkmark	2008
USA	×	\checkmark	\checkmark	1976

Source: MEP China; COAG Australia; EC.Europa; EPA/RCRA USA

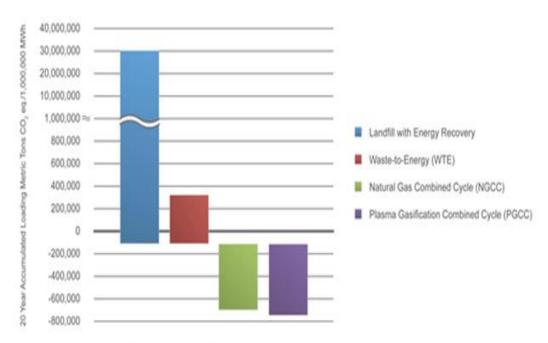
Role of Governments and Private Enterprise

ENGAGING ALL STAKEHOLDERS IN THE WASTE VALUE CHAIN

- Waste management is a challenging task for government and other stakeholders
- The costs for waste management will grow from ~\$205 billion to ~\$375 billion by 2025
- An on-going need to improve waste management plans
- Resource-efficient waste hierarchy is a long-term approach to integrated waste management - including recycle, reuse and recovery
- Large-scale investment in advanced thermal technologies would be the lock-in options in the future
- Waste management is an opportunity (for both public and private sector) to recover resources for a sustainable future, to realize environmental, economic and social benefits

Source: The World Bank, UNEP

CO₂ Emissions (Landfill vs. Thermal Treatment)



GHG EMISSIONS COMPARISON

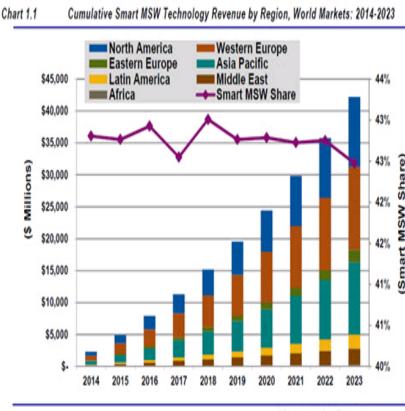
- Plasma gasification reduces greenhouse gas emissions (GHG) by over 50% on a lifecycle basis compared to conventional landfilling
- Emission levels from a combined cycle power plant using plasma gasification are similar to those from a natural gas fired power plant
- The use of waste as a feedstock in a plasma gasification power plant eliminates the GHG produced by otherwise landfilled waste and therefore the technology is expected to be RPS and REC eligible

A 2010 report by Scientific Certification Systems comparing Landfill, Waste to Energy (incineration) and Plasma Gasification Combined Cycle configurations, concluded that a "Plasma Gasification Combined Cycle (PGCC) system provides the lowest greenhouse gas emissions of the evaluated systems for waste disposal."

Source: SCIENTIFIC CERTIFICATION SYSTEMS, INC.

Waste-TO-Energy

Global Economic Impact (Revenues & Employment)

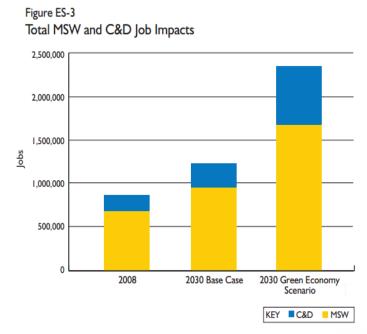


MSW AS AN **OPPORTUNITY**

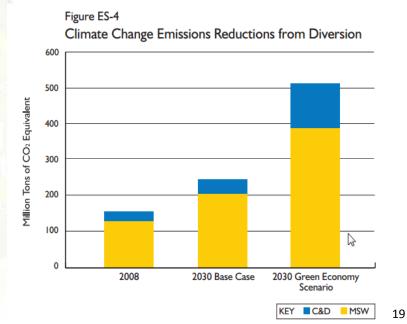
- Waste-to-energy (WTE) technologies are combustion, gasification and anaerobic digestion
- \$42.2 billion in cumulative revenue; annual revenue from smart MSW technology (e.g. WTE) is expected to experience a 12.2% compound annual growth rate, significantly more than the anticipated 4% revenue growth from conventional MSW technology
- The market for WTE technologies is projected to reach \$29.2 billion by 2022, up from \$6.2 billion in 2012
- WTE plants will treat a minimum of 261 million tonnes of waste annually by 2022

(Source: Navigant Research)

Source: Navigant Research


Waste-TO-Energy

WASTE AS AN OPPORTUNITY


Job Creation

 The Green Economy Scenario with a 75% diversion rate generates 2.3 million total direct jobs — over 1.1 million more jobs than in the base case, and nearly 1.5 million more jobs than in 2008.

Emissions Reduction

 The combined additional GHG reductions achieved in 2030 in the Green Economy Scenario relative to the Base Case total 276 MMTCO₂E (185 million tonnes from MSW and 91 million tonnes from C&D), equivalent to shutting down about 72 coalfired power plants or taking 50 million cars off the road.

Source: NRDC, BlueGreen Alliance

Waste-10-Energy

Technology Readiness for Waste Management

ALTERNATIVES FOR WASTE TREATMENT

BURY Landfilling waste:

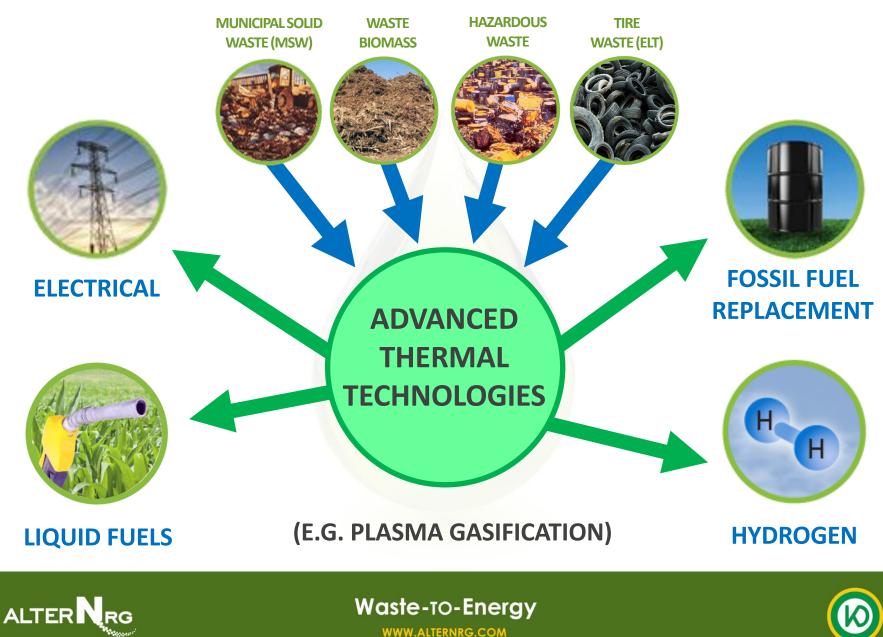
200 kWh (net) recovered per tonne of waste BURN Incinerating waste:

500-650 kWh (net) recovered per tonne of waste CONVERT Advanced Thermal Treatment

In addition to electricity the plasma gasification process can also create: ethanol gasoline, diesel fuel or oil replacement

RESULTS: Passes the problem to future generations

RESULTS: Creates ash requiring secondary processing or landfilling RESULTS: Life without landfills


EVOLUTION OF THE WASTE CONVERSION PROCESS

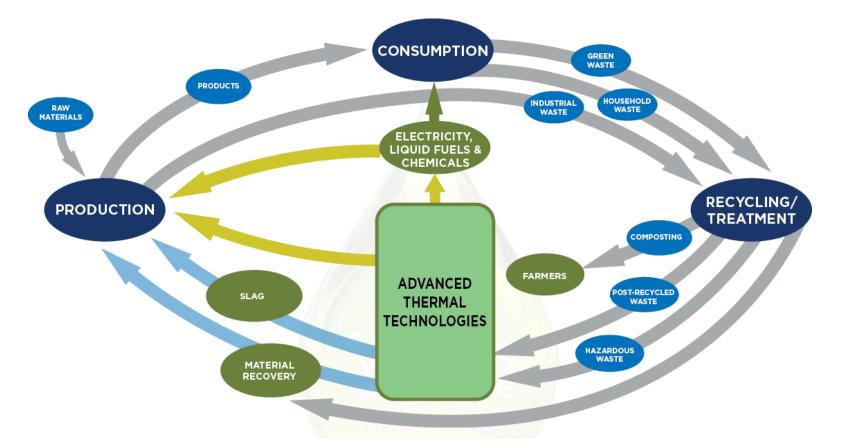
Waste-TO-Energy

WASTE TREATMENT USING ADVANCED THERMAL TECHNOLOGIES

WASTE DIVERSION RATE BY TREATMENT METHOD

(E.g. 1000 tpd waste handling/treatment)

	Recycling/MR	Incineration	Advanced Thermal Technologies
Waste Diversion	~20%	~70%	~98%
Waste for Treatment or Landfilling	~80%	~30%	∼2 %


- Recycling/MRF alone cannot eliminate majority of waste
- Incineration creates significant amount of residual waste that still require landfilling/disposal
- Advanced thermal technologies creates minimal residual waste for landfilling/disposal

Waste-TO-Energy

ADVANCED THERMAL TECHNOLOGIES ARE PART OF THE 'CIRCULAR ECONOMY'

- Advanced thermal technologies are part of the 'circular economy' and product life-cycle
- E.g. Plasma Gasification is suitable for processing post-recycled waste/RDF or waste that cannot be recycled and require appropriate disposal (e.g. hazardous waste)

Waste-TO-Energy

Waste-to-Energy in India: (Proposed Tariffs, Policy Measures & Incentives)

WASTE-TO-ENERGY IN INDIA: PROPOSED TARIFFS, POLICY MEASURES & INCENTIVES

Proposed tariffs:

- Bio-Power (biomass/gasification and bagasse cogeneration) US ¢ 11.5 13.5
- Waste-to-Power (RDF route) US ¢ 12

Policy measures:

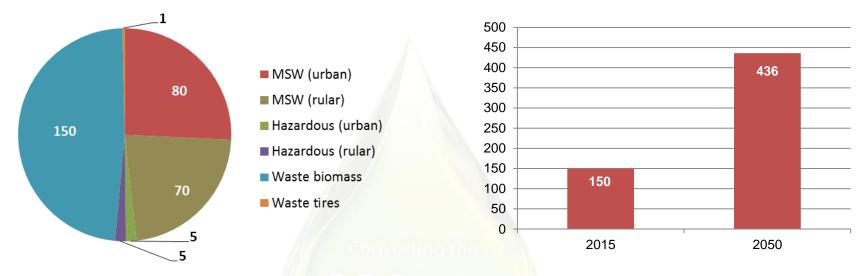
- Interest subsidy to reduce the rate of interest to 7.5%
- Financial assistance of up to 50% of capital cost per MW for demonstration size projects (limited to Rs. 3 crores/US\$ 448,800)
- Financial incentives for power generation per MWe (Rs. 15 lakh/US\$ 22,440) ; cost-free waste feedstock supply to site; land on a long-term lease (30+ years)

Power generation incentives:

- MSW/RDF route (Rs. 15 million/US\$ 224,400); MSW on gasification/pyrolysis /plasma arc (Rs. 39 million/US\$ 583,440); Bio-methanation technology and processes
- Others: per project development assistance and capacity building initiatives

Waste Management - as a renewable source of energy

GLOBAL WASTE HAS SIGNIFICANT ENERGY DEVELOPMENT OPPORTUNITIES

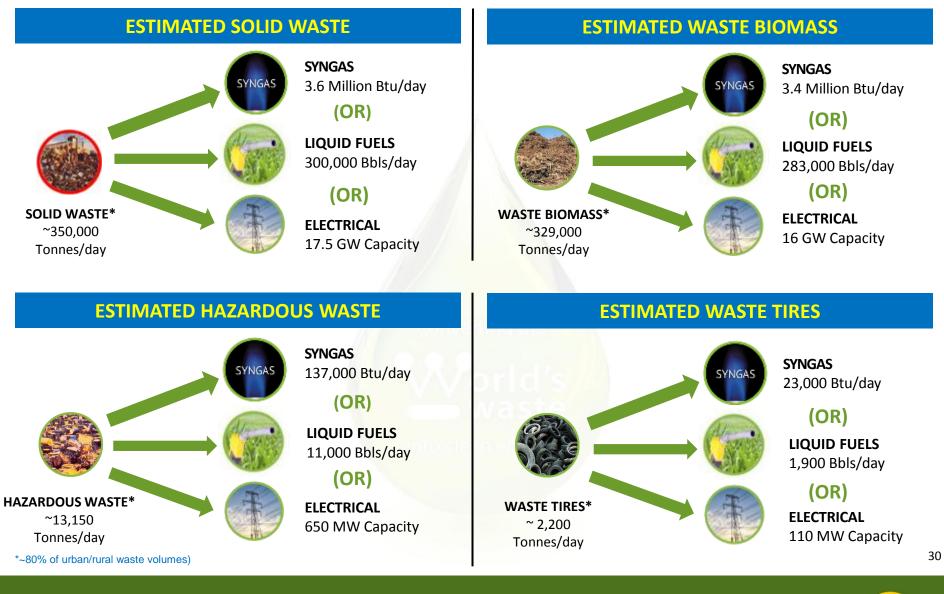


Waste-TO-Energy

INDIA'S WASTE CHALLENGES

~80% of MSW is landfilled (approximate, million tpy):

MSW generation (approximate, million tpy):


- Growing population, urbanization increases waste volumes and environmental concern
- On a cumulative basis, current 'urban' MSW generation is ~80 Million Tonnes/year; (estimated to reach ~436 Million Tonnes/year by 2050)
 - It is estimated, that an additional 70-80 MM TPY of 'rural' MSW would be generated but unaccounted (per capital basis)
 - ~80% of MSW is landfilled and ~20% is treated/recycled
- Additional waste streams are: hazardous/medical (~5 MM TPY); surplus waste biomass (~150 MM TPY; waste tires (~1 MM TPY) are generated
 - It is estimated, that an additional 1-3 MM TPY of 'rural' hazardous waste would be generated but unaccounted

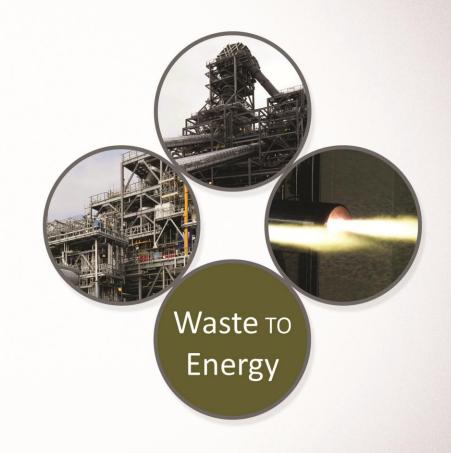
Waste-TO-Energy

MONETIZING WASTE IN INDIA: A RENEWABLE SOURCE OF ENERGY

THE WRAP UP

- Growing population/urbanization increases waste volumes and environmental concern
- Waste management is a global challenge but presents multiple opportunities
- Converting waste into renewable energy for the growing economies
- Waste management has global economic benefit on revenue growth and employment opportunities
- Some governments are providing meaningful regulations, policy framework and incentives to accelerate the development of the waste-to-energy sector
- Advanced thermal technologies (e.g. Plasma Gasification) provide clean, reliable and flexible waste-to-energy solutions
 - Diverting multiple waste streams from landfills (~98%), while creating power, liquid fuels or as a fossil fuel replacement
 - Enable governments/municipalities to implement their mandates on waste reduction, reuse, recycling (3Rs), while fostering the 'circular economy' plan.

Waste-TO-Energy



460, 227 – 11 Avenue S.W. Calgary, Alberta Canada T2R 1R9

www.alternrg.com

THANK YOU

