AGRI WASTE TO ENERGY: THE BIOGAS ROUTE

By
Deepak Palvankar
KIRLOSKAR INTEGRATED TECHNOLOGIES LTD. (KITL)
Biogas: The India Journey

- Biogas technology → Used for decades
- Popular for decades as management of dung at household levels
 - Cooking gas
 - Manure for farms
 - Village level household (promoted by MNRE)
 - Sizes up to 2 m³
- Small and medium scale dairy farms → electrical power & manure
- Distilleries → management of spent wash → regulation
- Use of kitchen waste → cooking fuel & manure
- Large scale (6,000 m³) and above using dung
- Segregated organic MSW → electrical power & manure → Municipal Corp.
- Press mud / poultry litter → BioCNG and manure
Agriwaste: An untapped potential

- Present uses of agriwaste:
 - Fodder
 - Gasification / Boiler → Electrical Power

- Agriwaste → a Potential feed for generating biogas and energy

- Types of agriwaste tested as feed for biogas plants:
 - Paddy Straw
 - Wheat Straw
 - Maize Stalk
 - Bajra Stalk
 - Jawar Stalks
 - Corn Cobs
 - Banana Stems… and more
Agriwaste: A Burning Issue

Surplus agriwaste is burned today

Effects:

Addition to Green House Gases
Pollution
Health problems
Loss of water in the soil \rightarrow Increased water requirement for next crop
Agriwaste Statistics

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Crop</th>
<th>Residue</th>
<th>Biomass Generation (kT/Yr)</th>
<th>Biomass Surplus (kT/Yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Paddy</td>
<td>Straw</td>
<td>149,647</td>
<td>30,578</td>
</tr>
<tr>
<td>2</td>
<td>Cotton</td>
<td>Stalks</td>
<td>31,358</td>
<td>16,577</td>
</tr>
<tr>
<td>3</td>
<td>Wheat</td>
<td>Stalks</td>
<td>93,362</td>
<td>16,176</td>
</tr>
<tr>
<td>4</td>
<td>Maize</td>
<td>Stalks</td>
<td>23,421</td>
<td>4,548</td>
</tr>
<tr>
<td>5</td>
<td>Soya bean</td>
<td>Stalks</td>
<td>9,940</td>
<td>3,284</td>
</tr>
<tr>
<td>6</td>
<td>Mustard</td>
<td>Stalks</td>
<td>6,999</td>
<td>3,174</td>
</tr>
<tr>
<td>7</td>
<td>Tapioca</td>
<td>Stalks</td>
<td>3,959</td>
<td>2,770</td>
</tr>
<tr>
<td>8</td>
<td>Groundnut</td>
<td>Stalks</td>
<td>13,148</td>
<td>2,067</td>
</tr>
<tr>
<td>9</td>
<td>Jowar</td>
<td>Stalks</td>
<td>17,148</td>
<td>2,043</td>
</tr>
<tr>
<td>10</td>
<td>Bajra</td>
<td>Stalks</td>
<td>12,039</td>
<td>1,920</td>
</tr>
<tr>
<td>11</td>
<td>Gram</td>
<td>Stalks</td>
<td>5,441</td>
<td>1,014</td>
</tr>
<tr>
<td>12</td>
<td>Oilseeds</td>
<td>Stalks</td>
<td>1,143</td>
<td>118</td>
</tr>
<tr>
<td>13</td>
<td>Paddy</td>
<td>Husk</td>
<td>19,996</td>
<td>12,944</td>
</tr>
<tr>
<td>14</td>
<td>Cotton</td>
<td>Husk</td>
<td>10,789</td>
<td>4,829</td>
</tr>
<tr>
<td>15</td>
<td>Mustard</td>
<td>Husk</td>
<td>1,658</td>
<td>1,575</td>
</tr>
<tr>
<td>16</td>
<td>Jowar</td>
<td>Husk</td>
<td>2,017</td>
<td>960</td>
</tr>
<tr>
<td>17</td>
<td>Bajra</td>
<td>Husk</td>
<td>1,806</td>
<td>431</td>
</tr>
<tr>
<td>18</td>
<td>Arhar</td>
<td>Husk</td>
<td>614</td>
<td>306</td>
</tr>
<tr>
<td>19</td>
<td>Groundnut</td>
<td>Shell</td>
<td>1,972</td>
<td>1,200</td>
</tr>
<tr>
<td>20</td>
<td>Coconut</td>
<td>Shell</td>
<td>1,322</td>
<td>939</td>
</tr>
<tr>
<td>21</td>
<td>Casuarinas</td>
<td>Wood</td>
<td>212</td>
<td>180</td>
</tr>
<tr>
<td>22</td>
<td>Sugarcane</td>
<td>Tops & leaves</td>
<td>12,144</td>
<td>2,277</td>
</tr>
<tr>
<td>23</td>
<td>Rubber</td>
<td>Secondary wood</td>
<td>997</td>
<td>598</td>
</tr>
<tr>
<td>24</td>
<td>Eucalyptus</td>
<td>Residue</td>
<td>163</td>
<td>138</td>
</tr>
<tr>
<td>25</td>
<td>Banana</td>
<td>Residue</td>
<td>11,937</td>
<td>4,177</td>
</tr>
<tr>
<td>26</td>
<td>Coffee</td>
<td>Pruning & wastes</td>
<td>1,458</td>
<td>1,166</td>
</tr>
<tr>
<td>27</td>
<td>Rubber</td>
<td>Primary wood</td>
<td>1,495</td>
<td>1,196</td>
</tr>
<tr>
<td>28</td>
<td>Wheat</td>
<td>Pod</td>
<td>18,672</td>
<td>8,382</td>
</tr>
<tr>
<td>29</td>
<td>Coconut</td>
<td>Husk & pith</td>
<td>3,185</td>
<td>1,592</td>
</tr>
<tr>
<td>30</td>
<td>Coconut</td>
<td>Fronds</td>
<td>7,279</td>
<td>3,633</td>
</tr>
<tr>
<td>31</td>
<td>Maize</td>
<td>Cobs</td>
<td>3,536</td>
<td>1,320</td>
</tr>
<tr>
<td>32</td>
<td>Jowar</td>
<td>Cobs</td>
<td>5,044</td>
<td>1,912</td>
</tr>
<tr>
<td>33</td>
<td>Bajra</td>
<td>Cobs</td>
<td>1,987</td>
<td>940</td>
</tr>
<tr>
<td>34</td>
<td>Cotton</td>
<td>Shell</td>
<td>10,789</td>
<td>4,829</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>511,041</td>
<td>145,027</td>
</tr>
</tbody>
</table>

Source: MNRE MoRD

Surplus Biomass

> 145 Million Tons per year

Surplus Agriwaste suitable for Biogas Plants

> 62 Million Tons Every Year!
Biogas: A Complete Solution

- Photosynthetic Cycle → Nature’s way of recycle
- 100% Carbon neutral
Agriwaste: Energy Potential

- Agriwaste: 62 Million Tons per Year

 - Biogas: 17 Million m³ / year
 - BioCNG: 6.8 Million tons/year
 - Equivalent to 6.8 Million tons/year of CNG OR 8 Million tons/year of LPG
 - PROM: 37 Million tons/year
 - Equivalent to DAP: 15 Million tons / year
Benefits

- **Empowerment of Rural India → Create wealth in Rural india**
 - Increase in earnings through sale of agri waste
 - Employment: Plant O&M + logistics of collection and transport of agri waste
 - Organic farming → Higher prices for produce
 - Overall economic growth in rural areas

- **Environment:**
 - Reduction in green house gases
 - Dramatic reduction in pollution
 - Overall improvement in health
 - Soil enrichment → increase land under cultivation

- **Country:**
 - Reduction in import bill of Natural Gas (@ $ 6,000 Million LPG @ $750 /ton)
 - Reduction in import bill of DAP (@ $ 6,000 Million DAP @ $ 455 /ton)
Issues

1. Technology:
 ✓ Private sector need to demonstrate
 ✓ Make projects economical without subsidy over period of time

2. Attracting investors in this segment:
 ✓ Policy framework for attracting investors (higher risk as compared to Solar, wind & Hydro)
 ✓ Establish a Revolving Fund (zero interest loan) greater than subsidy, instead of subsidy with an obligation on the project developer to repay back to Govt. in 10 years
 ✓ Compare prices to equivalent conventional energy without subsidy

3. Sale of PROM:
 ✓ Govt. Initiatives & programs to promote use of PROM and other organic varieties of organic composts

4. BioCNG as fuel for auto:
 ✓ Include BioCNG as a fuel for automobiles (highway and off-highway)
 ✓ Policy revision for opening retail sale of BioCNG to vehicles by Project Developers
Deployment Options

Distributed
- Small Scale, Manual, Batch Type
 - Size: 400 ~ 1000 m³
 - Village level cooking fuel + Power & manure / fertilizer
 - Energy & fertilizer self sufficiency at village level

Centralized
- Large scale, Automated, Continuous Feed Type
 - Size: 12,000 m³ and in multiples
 - Commercial
 - LPG & CNG replacement on large scale
Distributed: Village Level Energy Solution

Napier Grass
7.5 TPD

Feed Preparation

Dry Digester
8 x 50 m³

Leachate Digester
60 m³

Biogas storage
Balloon

H₂S Scrubber
2 x 25 kW

PROM Preparation

Biogas Genset

Cooking

Green Electricity

Manure
~0.85 TPD

400 m³ Biogas capacity
Village Level Batch Type
Centralized: Typical installation

- Agriwaste (Paddy Straw): 45 TPD
- Biogas: 12,000 m³ per day
- Energy options:
 - Electrical Power (Gross): ~ 28 MWH per day
 - OR
 - BioCNG (Bio Methane): ~ 4.5 ton per day
- Phosphate Rich Organic manure: ~ 30 ton per day
1.2 MW Paddy Straw Biogas Plant

Dry Digesters
Pulverizer
CSTR
Genset

Fertilizer Manufacturing Plant
1.2 MW Paddy Straw Biogas Plant
About KITL

- Part of the Kirloskar Group
- A Renewable Energy company
- **Businesses: Biogas, Solar & Hydro**
- Technology Provider for Biogas based Energy Plant
- Over 8 years of R&D on biogas substrates, process and equipment
- **DSIR approved R&D**
- In process of a R&D project jointly with ICT, Mumbai and partially funded by MNRE
- **Have tested over 85 different varieties of waste for biogas potential**
- More than 14 patents filed in the areas of biogas processes, designs and equipment
Work done by KITL in Agriwaste

- R&D on more than 80% types of agriwaste generated
- Extensive R&D on paddy straw → Lab to Pilot scale
- Developed and tested “Dry Digestion” technology for using 100% agriwaste
- Developed special digesters and equipment to handle agriwaste in small scale and large scale agriwaste Biogas Plants
- India’s first plant on 100% paddy straw in Punjab under commissioning:
 - Capacity: 12,000 m³ per day
 - Paddy straw consumption: 45 ton/day
 - 1.2 MW electricity from 100% biogas genset
 - Organic compost / Organic fertilizer
Thank You

IN HARMONY WITH NATURE
&
ON WAY TO SUSTAINABILITY

Energy from Biofuel

Sustainable Cycle for Biomass to Energy

Organic Carbon + Micro Nutrients reaching back to the soil
Contact

DEEPAK PALVANKAR
HEAD – BIOENERGY BUSINESS
deeak.Palvankar@kirloskar.com
+91 9822098078

Kirloskar Integrated Technologies Ltd.
13 – A, Karve Road, Kothrud, Pune 411038.
Phone No : + 91 20 25457939 / 40

Website: www.kitlgreen.com & www.solastica.com

Warning: This Presentation contains confidential, proprietary and privileged information and is the sole property of Kirloskar Integrated Technologies Ltd. (KITL). Any unauthorized review, use, disclosure, dissemination, forwarding, printing or copying of this presentation or any action taken in reliance on this presentation is strictly prohibited and may be unlawful.