Exergy as measure of sustainability of energy system

Prof. Em. Dr. Peter Novak
Hon. Mb.: IIR, ASHRAE, REHVA, Prof. Emeritus FTS
Past Vice Chairman of Scientific Council of EEA,
Ljubljana, Slovenia
Faculty for Technologies and Systems, Novo mesto, Slovenia

peter.novak@energotech.si
"Living well within the limits of the planet....“ (EU)

4 main problems on the World:

1. Population growth
 For a first billion we needed 12,000 years. At present we need only 14 years for a new billion. Can we survive such exponential growth?

2. GHG emissions
 400 ppm of CO₂ was overridden in 2016. Temperature rise of 1,5°C is achieved!

3. Ecological footprint
 We need 1,7 Earth

4. Uneven political, economic and social development
 GDP/cap: ~ 1: 350
 Energy/cap: ~1 : 115
 Water, Fertile land and Energy are basic resources for development.
 The problem can be partly solved with sustainable exergy system.
In 45 years we have been not able to change our development patterns!

In the Club of Rome book „Limit of the Growth“, 1972 we can find simulation model for world development „Business as usual“. We put in the graph the real development on the world (UN Statistic) for last 40 years, and find large agreement with prediction they made. Humanity is approaching the collapse in next decades. To the three graphs we add fourth one, showing the falling number of etic life in society we live in.

1960 1940 1920 1900 1880 1860 1840 1820 1800 1780 1760 1740 1720 1700 1680 1660 1640 1620 1600 1580 1560 1540 1520 1500 1480 1460 1440 1420 1400 1380 1360 1340 1320 1300 1280 1260 1240 1220 1200 1180 1160 1140 1120 1100 1080 1060 1040 1020 1000 980 960 940 920 900 880 860 840 820 800 780 760 740 720 700 680 660 640 620 600 580 560 540 520 500 480 460 440 420 400 380 360 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0

1960 1940 1920 1900 1880 1860 1840 1820 1800 1780 1760 1740 1720 1700 1680 1660 1640 1620 1600 1580 1560 1540 1520 1500 1480 1460 1440 1420 1400 1380 1360 1340 1320 1300 1280 1260 1240 1220 1200 1180 1160 1140 1120 1100 1080 1060 1040 1020 1000 980 960 940 920 900 880 860 840 820 800 780 760 740 720 700 680 660 640 620 600 580 560 540 520 500 480 460 440 420 400 380 360 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0

1960 1940 1920 1900 1880 1860 1840 1820 1800 1780 1760 1740 1720 1700 1680 1660 1640 1620 1600 1580 1560 1540 1520 1500 1480 1460 1440 1420 1400 1380 1360 1340 1320 1300 1280 1260 1240 1220 1200 1180 1160 1140 1120 1100 1080 1060 1040 1020 1000 980 960 940 920 900 880 860 840 820 800 780 760 740 720 700 680 660 640 620 600 580 560 540 520 500 480 460 440 420 400 380 360 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0
Why Exergy?

“Exergy of a system in a certain environment is the amount of mechanical work that can be maximally extracted from the system in this environment” (Rant, 1955 et all)

- According Rant the energy W is a sum of exergy E_x and anergy A (~energy of environment*)
 $$W = E_x + A$$
- Exergy is a measure of quality of energy with regard to the environment.
- Energy is always conserved and can neither be produced nor consumed.
- Exergy can be very easily converted in anergy through irreversibility’s in the conversion processes.

* Some authors have other definitions
Resources evaluation, exergy, sustainability and circular economy

- Resources cannot be evaluated only according to mass and energy balance, because they not disappear.
- Using the exergy as measure of resources depletion we can evaluate quality of our processes taking into account the conservation of mass, energy and irreversibility’s
- Exergy efficiency \(E_x E = \text{exergy-out}/\text{exergy-in} \)
Exergy destruction - irreversibilities

• Sustainable development means less exergy destruction or depletion in all circumstances.

• Circular economy is a policy to minimize the use of resources, to minimize the thermodynamics irreversibility’s, this mean to promote higher exergy efficiency over the life cycle ($LCE_x A$ and $E_x ROE_x I$).
Comment:

Even in scientific communities is normal to use expression: consumption of energy, water, steel, aluminium, etc. This not in accordance with two basic law of physic: conservation of mass and energy.
LCE\textsubscript{x}A calculation

\textbf{LCE\textsubscript{x}A} \textbf{(Life Cycle Exergy Analysis)} we used as a method to \textbf{quantify depletion} of natural resources and to assess the efficiency of natural resources used. The life cycle exergy analysis of a system usually consists of three separate stages with different exergy flows that are similar to the three steps in the life cycle of a product in an LCA:
- construction phase,
- operational phase and
- clean up phase.

During the construction phase, exergy is spent and none is created. The exergy used for construction combined with the exergy used for maintenance and clean up make the \textbf{total input exergy}.
Natural energy resources are classified as
- natural flows and
- stocks.

Stocks are then divided into
- **deposits** (dead stocks) and
- **funds** (living stocks).

Natural flows and funds are **renewable** while deposits are non-renewable.

The direct exergy input (e.g. solar, water, wind,...) of renewable sources can be **disregarded** since they represent a natural flows. If natural exergy flows are not used will be lost and transformed in **anergy** – heat of environment.
Example of exergy flow diagram for $LCE_x A$ of a power plant using fossil fuels

The exergy of the output electricity will always be lower than the exergy of the fuels used during the production.

Power plant using fossil fuels can therefore never be sustainable since it uses more exergy than it generates. $E_x E$ is always less than 1.

Power plant using the renewable energy sources for production of electricity convert exergy of a natural flow to a usable form of exergy - electricity. During the operational phase it will produce more exergy than the indirect exergy needed during the life cycle for construction, operation and demolition.
Exergy balance for any production scheme

$E_x \text{ROE}_x \text{I}$ is exergy return of exergy invested. In case of exergy used only from RES the $E_x \text{ROR}_x \text{I}$ should be defined as:

$$E_x \text{ROE}_x \text{I} = \frac{\text{life time exergy generated}}{\text{cumulative exergy required}} = \frac{\text{Life time}}{E_x \text{PBT}}$$

Source: Davidson, 2011
Sustainable Exergy System - SES
as replacement of present Energy System
Characteristics of sustainable exergy (renewable exergy) system - SES

To fulfil the daily exergy needs of different consumers, the new (energy) – exergy system has to respond to the following six main requirements:

1. Source of exergy must be inexhaustible, available everywhere on the planet;

2. Zero emission of GHG using the new exergy carriers;

3. Available any place and any time (in all needed forms of exergy: solid, liquid, gaseous fuels and electricity);
Characteristics of sustainable exergy (renewable exergy) system - SES

4. Must be compatible with existing infrastructures with minor adaptations;

5. In transition period the present energy system and SES has to work in parallel with no interference (coexistence of two systems);

6. Should be competitive with fossil fuels system if all external environmental costs will be included in their exergy carriers’ price
SES

Two basic energy carriers:
- Solar electricity + biomass

Chemical storage of solar electricity
- Hydrogen + Carbon from biomass

- Methan
- Methanol
- Electricity

2 energy sources:
- solar irradiation and
- planetary energy

4 secondary energy carriers

5 conversion technologies

3 main final energy carriers:
1. Electricity
2. Methane \(\text{CH}_4 \) (gaseous fuel)
3. Methanol \(\text{CH}_3\text{(OH)} \) (liquid fuel)
4. Ethanol \(\text{C}_2\text{H}_5\text{OH} \)
5. Dimethyl ether \(\text{CH}_3\text{OCH}_3 \) (liquid fuel)

Ethanol and Dimethyl ether can be a transition fuels (for gasoline and diesel engines).

System represent carbon recycling in nature and present solution acceptable for most of the countries on the world enabling surplus of renewable electricity to be converted in gas and liquid fuels (P2G, P2L) - as chemical storage of RE.
How the proposed SES comply with the 6 requirement?

1. Primary exergy sources - solar energy in all forms and biomass – are everywhere available;
2. No emission of GHG;
3. Proposed exergy carriers can be used any time on any place;
How the proposed SES comply with the 6 requirement?

4. For proposed system we don’t need a new infrastructures (power lines, gas pipelines, liquid storage also exist)

5. All exergy carriers can coexist with the present energy system

6. Should be competitive: According to IMF report the world fossil fuel pre-tax subsidies in 2013 have been $480 billion/y post-tax subsidies $1.9 trillion/y. Including the $1.4 trillion/y environmental damages, total direct and indirect costs, not included in the price of fossil fuels used are $ 2.78 trillion/y.

Including this subsidies in the final price of fossil fuels, competitiveness of RE will be out of question.
Is fossil fuel replacement in next 33 years viable and possible?

For next 33 years RE growth has to be ~ 290 Mtoe/y to achieve 80% lower GHG emissions on the world. RE growth 2015/2016 was only 80 Mtoe/y.
Do we have enough resources?

- Solar energy?
- Organic carbon?
- Cooper?
- Lithium?
Do we have enough resources?

Based on present known RE resources and technologies is fossil fuel replacement only the question of political will.

Available technical potential: 11.941 EJ/y
Needed exergy 2016
13 276.3 Mtoe (~575 EJ/y)
~800 EJ/y in 2050 or 6.7% of technical potential.
Carbon from biomass

Carbon stocks on the world are 500 billion tons of carbon (IPPC, tier 1, Global biomass carbon map, 2000).

Yearly amount of carbon in growing biomass is:
\[C = 104.9 \times 10^9 \text{ t C/y} \] (carbon, dry mater)* divided 50% onshore and 50% offshore.

Yearly needed carbon for replacing present fossil exergy use (11,354.3 Mtoe/y, 2016) as oil, gas and coal is
\[C = \sim 7.8 \times 10^6 \text{ t/y} \]

Natural resources

Hydrogen needed is: $\sim 1.3 \times 10^6$ t H_2/y

This can be covert be splitting of 11.7×10^6 t/y of water

Conclusion: Natural resources for proposed SES are in abundance and can fulfil our expectations.
Cooper?

- World reserves of cooper: 2 100 Mt discovered reserves and 3 100 undiscovered resources (USGS 2017)
- Present production 2016: 23. 9 Mt/y
- Energy needed for production Cu: 24÷31 MWh/t
- To replace 1 bn light vehicles presently in use with electric or hybrid cars we need 40÷80 Mt of Cu
- Same amount will be used for distribution and charging stations, WG, HE
- This mean ~ 8% of discovered reserves

Problem is in capacity building!

Source: Wood Mackenzie, Rio Tinto
Lithium

World reserves: 46.9 Mt (USGS, 2017)
Proven reserves: 14 Mt (USGS, 2017)
Present production 2016: 0.035 Mt/y

*Lithium use present: 60% industry, 40% batteries
*Lithium use 2025: 30% industry, 70% batteries
*Predicted production growth: 2017-2025: 4 times

* Deutsche Bank Market Research, Lithium 101, pg. 23
Where we stand with technologies?

How long is the E_x PT?
How big is the E_x ROE$_x$I?
E_xPBT and E_xROR$_x$I data for some RE technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>E_xPBT (years)</th>
<th>E_xROE$_x$I LOW</th>
<th>E_xRE$_x$I HIGH</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
<td>0.2÷0.4</td>
<td>3</td>
<td>6 (28)*</td>
<td>*E_xPBT 0,2</td>
</tr>
<tr>
<td>WIND</td>
<td>0.2÷0.5</td>
<td>18 (offshore)</td>
<td>34÷18 (onshore)</td>
<td>Cf ~ 0,35 ÷0,19</td>
</tr>
<tr>
<td>HYDRO RESERVOIR</td>
<td>1 ÷ 1.5</td>
<td>205</td>
<td>280</td>
<td>Long life time</td>
</tr>
<tr>
<td>HYDRO RUN OF</td>
<td>0.5÷1 small 1÷1.5 large</td>
<td>170</td>
<td>267</td>
<td>Long life time</td>
</tr>
<tr>
<td>BIOMASS WASTE</td>
<td>0.3÷0.5</td>
<td>10</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

All this technologies are sustainable, having E_xROE$_x$I more than 1

For information: Present conversion efficiency from solar irradiation over sugarcane to bio-ethanol is under 0,032%* in comparison to PV system efficiency of ~16% on the same irradiated area.

*verified on real data from Brazil bio-ethanol production
Conclusions

• Exergy efficiency $E_x E$ and $E_x ROE_x I$ are good indicators of exergy conversion processes

• Proposed SES can replace the present system with further development of chemistry for biomass conversion in methane and methanol.

• SES with s-methane and s-methanol represent the chemical storage of solar energy - can be used everywhere.
Conclusions

• Biomass conversion in liquid fuels need further optimization, improving significantly the exergy efficiency of the processes from land use to fuel.

• Synthetic gaseous and liquid fuels enables us further use of the ICE in light and heavy vehicles or hybrid cars.*

• Time for transition is 33 years and is long enough to achieve our final goals.

We have to return back to the sun.

Circular economy with Carbon recycling exergy system with sunflower before Fukushima

and not with Sunflower after Fukushima

Thanks for attention, questions welcoming!